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The Painlev6 approach for perturbed nonlinear equations: 
Backlund and Miura-type transformations 

Alexander A Alexeyevt 
Laboratoty of Physical Chemistry of Modified Surfaces, Institute of Physical Chemistry, 
Russian Academy of Sciences, 31 Leninskii pmspekt, Moscow 117915, Russia 

Received 15 September 1994 

Abstract. A modification of the singular manifold or WTC method is proposed for perturbed 
nonlinear PDES and its application iS illusmated with several examples. As a result, 
appmximate auto-Bicklund and Miura-type bansformations are consvucted for the equations 
under consideration. 

1. Introduction 

The singular manifold or WTC method for nonlinear PDEs was proposed in [l] and has 
already been used with success for many such equations (see, for instance, [2] and references 
therein). This method allows one to carry ant singular analysis of PDEs. It is, however, 
more significant that in a number of cases we can truncate the related series and use them 
to obtain Lax pairs, auto-Biicklund transformations, etc. In principle, this approach can  be 
applied to equations with a small parameter as well. However, when this is used to find 
corrections to solu&ons of the reduced equation, a number of difficulties emerge. First, 
since perturbed and non-perturbed versions may have varying leading terms, their related 
singular expansions may also differ. Moreover, if these terms involve a small factor, its 
inverse powers appear in the expansions. The purpose of the present paper is to extend the 
original method and propose its simple modification for the above-mentioned cases, using 
the ideas of the alternative technique, namely Painlevps or-test. This approach was originally 
proposed by Painlev6 [3] for singular analysis of ODES and arose as a generalization of the 
method of small parameters. In recent years its application for PDES has received wide 
acceptance [b71 .  

The essence of the wmethod is as follows. Suppose we have a one-parameter ODE that 
depends analytically on a complex parameter or in a domain containing CY = 0. Consistently 
testing the terms in the Maclaurin expansion 

u ( x ) = u o ( x ) + o r u I ( x ) +  

for its general solution, a set of necessary conditions for the absence of movable branch 
points in the full solution can be found. 

The problem is that, in practice, for non-perturbed equations the parameter or is 
artificially introduced by a suitable scaling in such a way that the limit or + 0 introduces 
major simplification to the equation of interest. 
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The main idea of the paper is to combine the truncated WTC and a-Painlevd methods 

Let us take a perturbed PDE 
and apply them to PDEs with a small parameter. 

where E,[ ] are some differential operators. Inserting an asymptotic series 

U = K 0 ( X , I ) + E U , ( X , f ) + . . .  (1.2) 

into (1.1) and equating the expressions of each order in E to zero, one gets a set of equations 
for K i :  

Eduol = 0 ( 1 . 3 )  

E L [ K i l  = - E t [ K o l  ( 1.4) 

with E L [  ] being the linearization of EO[ 1. 

Laurent series: 
As in [1,2], assume initially that ui in (1.2H1.4) can be expanded in a generalized 

+m - 
~i = ~ ~ j j ( ~ , f ) F j ( ~ , t )  pi E N. ( 1 . 5 )  

j = - p ,  

This is necessary to determine the possible resonances in singular expansions for ~i and then 
to verify whether they should also contain powers of logarithms a n d h a t e d  logarithms. 
because perturbations of integrable PDm, in general, may possess solutions which cannot 
be represented by Laurent series. If so, the above terms must be added, changing ( 1 . 5 )  into 
a multiple series, the simplest case of which is the double series 

+m +m 

U; = ~ w i j x F J ( 1 0 g F ) '  Pi E N. 
j = - p ,  k=O 

Such singular analysis for ( I  .3) is standard and well known [ 1 . 2 1 ,  whereas some remarks 
should be made for equations (1.4), i.e. linear inhomogeneous equations. 

First of all, there are two kinds of leading terms in such equations. In the first the 
leading terms on the RHS only depend on uj (j c i ) .  The second type is associated with the 
related homogeneous equation and defined as the linearization of the leading terms of ( 1 . 3 )  
on the background of the dominant addend W O , - ~ F - W  in (1.5) for K O .  Requiring that all 
these terms balance determines the dominant behaviour of ~i (i > 0) in the neighbourhood 
of F = 0, i.e. the possibte values of pi and U J ~ . - ~ , .  

The following properties are immediately associated with the homogeneous form of 
(1.4) and can rigorously be justified. 

Proposition I. Let rk be the resonances in expansion ( 1 . 5 )  related to the lowest-order 
equation ( 1 . 3 ) .  Then arbitrary coefficients in (1.5) for ui (i > 0) may arise only at the 
powers F-m+'A, i.e. the same powers of F as for KO and in addition F-PO-' (one resonance 
is always -1). 
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Proposition 2. Free coefficients in (1.5) for ui(i > 0) can be set equal to zero without 
loss of generality. In other words, they can be taken into account in the leading-order 
approximation ug. 

Finally, it should be noted that a perturbed equation can also admit movable essential 
singularities (branched or unbranched) or even movable natural barriers, which are not 
recognized by local analysis. Therefore, it may be that the expansions obtained are limited 
to some class of solutions. In particular, when pi = PO+ 1 there always exists a compatibility 
condition for F caused by the right-hand side of (1.4), and such a limitation is obvious. 
This fact may, for example, indicate the existence of a class of solutions with essential 
singularities. 

As is known, in many cases generalized singular expansion can be truncated [l, 21, 
but this imposes a reshiction on the type of F .  Substituting such finite expansions into 
the equations under study, one finds not only recursion relations for their coefficients, 
but additional constraints for F (the so-called singular manifold equations) as well. An 
analogous procedure is readily introduced for the expansions of U!. For the singular manifold 
equations to be obtained in these cases, it is necessary to find the required number of 
coefficients via the system (1.3H1.4) and insert (1.2) into the full equation (1.1). Then, 
again separating powers of F and retaining terms of appropriate order of E ,  one obtains the 
abovementioned relations for F .  

It was shown in [XI that the function V (or x = V-') 

a 
ax 

v = - log (F/&) (1.6) 

is the best expansion function for singular analysis from the standpoint of invariance under 
the Mabius group. (The PainlevC property together with some details of the analysis are 
invariant under this group.) In  so doing, V satisfies the Riccati equations: 

v* = -v= - s /2  

v, = c v =  - C,V f (CS i- CX,)/2 

with the compatibility condition 

s, + c,,, + 2c,s + cs, = 0 (1.9) 

where we have used the following compact notation [XI: 

C = -Fi /Fx 

S = F,,,/F, - iF:JF:. 

As was also shown in [SI (section 4, remark I), application of this function naturally 
introduces and explains truncation on the constant level, i.e. the use of the truncated series 

whenever PDEs are polynomial in dependent variables and their derivatives. 
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The use of such a series is highly important for perturbed nonlinear PDES, because they 
allow one to derive approximate auto-Bbklund transformations, Lax pairs, etc (e.g. by 
applying the technique described in [9]) correctly. The problem is that the special type of 
functional series underlying the wn: approach is constructed for arbitrary function F ( x .  t ) ,  
although the necessary balance of terms holds at every value of independent variables [ 1,2]. 
The singular analysis considers these infinite series near the singular hypersurface F = 0, 
whereas Weiss et af [ 11 have shown that their truncated versions are simple sums and valid 
everywhere over the region. For these reasons in the cases of unperturbed PDEs they result 
in the above-mentioned transformations, and these transformations are valid not only on 
the singular hypersurface but at every value of the independent variables. In the case of 
perturbed PDES we have the same situation, and expansions (1.2) with ui in the form of sums 
remain correct, possibly outside some neighbourhood of the singular hypersurface. (This 
situation is usual for perturbation techniques.) As mentioned earlier, this neighbourhood is 
not essential for constructing the above functional series and is of no interest for the soliton 
PDES from a physical point of view in most cases, although some classes of solutions (e.g. 
rational solutions or the so-called algebraic solitons) cannot be investigated in this way. 
Unfortunately, in the general case it is impossible to estimate such a neighbourhood. 

Below we will confine ourselves to the asymptotic series (1.2) up to E and use the above 
expansions. In view of (1.6H1.8) they take the form 

PI 
ui = Wij(X,i)V’ 

j=O 
(1.10) 

and the singular manifold equations are expressed only in terms of S and C. It is also 
important to note that for all of the PDEs considered below the related series are truncated 
before the resonances, i.e. before the points where the logarithmic functions of F could 
arise [1,21. So the use of simple sums (1.10) is indeed justified. 

2. The KdV, MKdV and KaupKuperschmidt equations with perturhations 

2.1. Perturbed KdV 

We start with the perturbed KdV equation (PKdV) of the following form 

(2.1) 

For the coefficients of (1.10) for uo and U ]  in (1.2) to be determined, one needs to 

2 
U, + 6uux + uxzx + E(UU uz + yuutxx + Buxuxx + 8 ~ x . r x x . r )  = 0 

the particular case of an equation proposed in [IO] for waves in a rotation flow. 

consider the first two equations of (1.3)-(1.4), namely 

a a a 3  
at ax a x 3  
-U0 + 6 ~ 0 - u ~  + -uo = 0 (2.2) 

a a a3 a3 a az 
-u1 + 6 - h u o )  + -UI = - 
at ax ax3 ax3  ax ax2 + yuo-uo + p-uo-u0 + 

(2.3) 

The unperturbed KdV (2.2) is well known [1,2] to have the resonances rl = -1, rz = 4, 
r3 = 6, and the corresponding expansion (1.10) is of the form 

ug = -2V2 + (C - 4S)/6. 
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For this uo the balance between the leading terms of (2.3) (all the addends without a u l / a t )  
determines the value of P I  in the expansion for U],  i.e. pI = 4. Thereafter substituting the 
latter with W13 = 0 (see proposition 2) into (2.3) and separating the powers of V, one has 
the following recursion relations: 

V’: -3W14+CY-38+906-6y=O 

v6: W14,x = 0 

Vs: 2C(-(u + 3y) + 2S(-27Wj4 +  CY - 218 + 6308 - 42y) 

~ ( - W I ~ . Z X  f 2WId = 0 

V4: 3CW14.x + 132SW14.z + 2Sx(27W14 -   CY + 248 - 6306 + 30y) (2.4) 

+ Cx(-9W14 + 2or - 68) + 3(W14,r + W14,rxx + 6W1z.x + 301v11) = 0 

V3: C’LY + 2OCS(-u + 3y) + ZS2(-135W~i + 3 h  - 908 + 27728 - 192y) 

+ 54S(-W14,xx + 2W1z) - 54SxW14,~ + 6SXx(-3Wl4 - 48 + 1266 - 6y) 

+ 6Cu(3W14 + 8 )  + 54(-W1z,rr - W I I . ~  + 4WIo) 0. 
Solving them sequentially, one identifies the terms order by order in powers of V, and uI 
becomes of the form: 

UI 5 (CY - 38 + 906 - 6y)V4/3 + [C(a - 3y) + ~ S ( C Y  - 38 + 906 - 6y)]V2/9 

+ [~S,(-~CY + 98 - 3608 + 3 6 ~ )  + C,(-cu - 38 + 270s - 12y)]V/90 

+ [ - SC*CZ + 4OCS(a - 3y) + 1OSz(u - 98 + 1988 - 6 y )  

+ 48Srx(~ - 28 + 458 - 3y) + ~C,,(-CY + 178 - 6308 + 18y)]/1080 

with the condition (2.4) associated with the resonance rl = -1 of the reduced equation 
satisfied identically. 

Then inserting (1.2) with ug and U I  thus defined into equation (2.1) and omitting all the 
terms of order O(E), one again sets the coefficients of like powers in V equal to zero in 
order to obtain the singular manifold equation. In so doing, the coefficient of V2 results in 
the following relation: 

90(Cx - S x ) + ~ [ 5 ( ~ ~ - 3 y ) C r + ( 8 ~ ~ - 2 1 8 + 5 4 0 6 - 3 9 y ) C ~ ~ ~  + 10(~~-3@+908-6y)S, 

+ 3 ( 3 ~  - 8 + 150s - 24y)SrS + IS(CY - 28 + 608 - 6y)SxC 

+ 3 ( 7 ~  - 198 + 5108 - 36y)SCr +  CY - 98 + 270s - 36y)Sxxx] 0. 
Taking into account the linkage (1.9) between C and S, it can be simplified. and we obtain 
for C: 

C=S+Ai  + E [ ~ S , , + ( Y / ~ - ~ ) S ~ + A I ~ S / ~ + A ~ ]  
12.5) 

A I ,  .XZ = constant. 
As a result the approximate expansion for U takes, in view of (2.5). the following form: 

U = (- 12Vz -3S+A1)/6+~[ -72V4(-a + 6y + 38 - 906) -72V2S(-~+5y +Z@ - 606) 
-24V’Ai (-a +3y) +36VS,( - C Y + ~ Y  +@ -306) -9Sz( -01+3y +ZO -408) 

- ~ S A I ( - C Y + ~ ~ ) - ~ S , , ( - C Y + ~ ~ + ~  - 106)+36A2-A~~~] /216+0(~~) .  

(2.6) 
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The singular manifold equation (2.5) is seen to depend on just two parameters of (2.1). This 
fact permits us to establish a linkage between equations of type (2.1) with the same 6, y 
but differing 01, p .  

Keeping in mind (1.7), (2.6) can be presented in terms of V: 

U E (-6V2 + 6V, + A1)/6 + &[36V4(a - 206 + 5 y )  + 72V2V,(-a - 206 - y )  

+ 12V2A, (-a - 3 ~ )  +36VVX,(-~ - p  +SOS -6y) +36V,Z(-@+308 - y )  

+ 1 2 V . h 1 ( ~ ~ + 3 y ) +  lSVx.zz((~+B- 108+2y)+~A~+36A2]/216. 

(2.7) 

After that, the relationship sought is easily derived: 

u-U'g&/12[(a'-LY)(UJz + 2 U z ) - ( ~ ' - p ) U L x ] .  (2.8) 

Here U corresponds to (2.1) with somea. p, y. 6, and U' to (2.1) with the same y .  6 but a', @', 
By this means we have obtained the approximate transformation between the equations of 
type (2.1) with various parameters of the perturbation. In the case that one of them is 
integrable, this mapping is called canonical [ll]. There are four such cases: KdV, higher- 
order KdV (a, y. p.6) = 6(30, 10.20, 1) 1121, modified Sawada-Kotera 6(45, 15. 15, I), and 
modified KaupKuperschmidt 6(45, 15,75/2,1) equations. The latter two can be derived 
from the classical analogue by formally replacing U -+ U +constant [13]. 

As an example, the typical profiles of the first corrections corresponding to KdV and 
high-order KdV two-soliton collisions aredepicted in figures 1 and 2. The results are adduced 
in a coordinated system moving with the velocity of one of the solitons under consideration. 

In addition to the above, an approximate B2cklund transformation is associated with 
(2.5)-(2.7). Indeed, keeping in mind (2.5) and replacing S by 

S g 2q - A1/3 + E[NAL(Y - 106)q + A:(206 + y )  - 36Az]/lOS 

the relation (1.9) leads to the equation 

qt + 6qxq + qrrr + &[%xxxxx + 5 ( ~  - 48)qxq2 + ( 3 ~  - 106)qzqzx + ~ q q r x r ]  + O(& = 0. 
(2.9) 

Figure 1. Plot of the first correction to the high-order ~ d v  two-soliton solution (wavenumben: 
k, = 5. k2 = 6) for fhe PKW quauon at a = 0. @ = 50. y = 10, and 6 = I ,  
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Figurc 2. Plot of the first correction to the K ~ V  two-soliton solution (wavenumbers k ,  = 5. 
k2 = 6 )  for the PKdV equation at LI = I ,  ,9 = -1, y = 0, and S = 0. 

First, it is of the type (2.1), and hence (2.5)-(2.7) determine the one-parameter (hz can 
be included into hl by hl -+ A1 + E A * )  Backlund transformation between (2.1) and (2.9). 
Moreover, for a = 5 ( y  - 46); 8 = 3y - 106 these equations are identical, and we have 
the auto-transformation. Since the above procedures are also applicable to (2.9), in fact we 
have obtained the auto-transformation for any choice of the parameters. 

In figure 3 the results obtained for equation (2.1) are schematically presented. 

2.2. Perturbed MKdV 

A perturbed MKdV equation arises, for instance, in the theory of quasi-onedimensional 
solids 1141 and in liquid-crystal hydrodynamics [15]. Here we will consider this equation 
with a perturbation of the most general type: 

(2.10) U! + 6u2u, +U,,, + E((Yu, , , ,~  + BuzuXIx + Y U U , U ,  + SU: - Cuu4ul) = 0. 

The truncated series and resonances associated with its unperturbed version (1.3) are: 

uo=iV q = - l  r 2 = 3  r3=4.  

The first-order equation of (1.4) respectively determines p1 = 3 for U ]  and the form of the 
coefficients in (1.10): 

W13 = -i(120a - 68 - 6 - 2y - <)/30 

WIZ = 0 
WII = -i[(-lZOa+68 +6+2y +<)C+(48& -448 +6 -8y  -9<)S]/120 
W ~ O  = -i[~,(-18&+14~+46+3y+4~)+C,(120cr-6~-S-2y-J)]/I20. 

Further substitution of (1.2) with these uo and u1 into (2.10) gives rise to the equations for 
S and C. For instance, from the coefficient of Vz one has 

(see proposition 2) 

12O(S - C) + &[3(120a - 68 - 6 - 2 y  - <)Cx, + 3(-12& + 88 - 76 + 6y + 3C)S2, 

+ (-12001 + 68 + 6 + 2y + <)C2 + lO(60~ - 58 - y - <)CS 

+ (-144a + 168 - 56 + 4y + 3<)5Sz] 2 0. 



1706 A A Alexeyev 

Figure 3. The properties of the perturbed KJV equation associated with ifs singular manifold 
eqvation. 

Proceeding in the same manner as before, one gets 

c 
As this takes place. the remaining coefficients are simplified and lead to the constraint 
( = 2oOr - p - 2y + 46. After that, (2.11) reduces to 

s + &[as,, + @/4 - 01)SZI + &(-2001+ p - 46 + 2y + + S,,)/20. (2.1 1 )  

c E s + &[asxr + (8/4 - 01)S*] (2.12) 

and we anive at the net expression for u ( x ,  1 ) :  

U = iV - i&(4(2001- p - 6 ) V 3  + [ - (2001 - p  -S)S+ (6001 - 78 +2y -76)SIV 

+(200r-~-6)Sx + ( - 2 0 ~ ~ + 2 p - ~ + 4 6 ) S ~ } / 2 4 + 0 ( ~ ~ ) .  (2.13) 

Again, the singular manifold equation (2.12) depends on just two parameters of (2.10). 
and the corresponding transformation between the equations of the type (2.10) with various 
y ,  6 can easily be derived: 

U' E U - &[(-y + 36 + y ' -  36')u,, + 2(-y + 26 + y' - 26')u3]/12. (2.14) 

This mapping is canonical when U or U' corresponds to the integrable cases of (2.10): 
the MKdV and higher-order MKdV (a, p ,  y ,  6 ,  C) = CY( 1 .  IO, 40, 10, -30) [ 121 equations. 
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Mgure 4. Plot of the first mmction to the high-order MKdV hvo-soliton solution (wavenumbers: 
ill = I ,  kz = 1.2) for equation (2.10) at e = -0.1, ,9 = -1, y = -2, S = 0. and < = 3. 

Figure 5. Plot of the first mnection to the highader MKdv two-Soliton Solution (wavenumbers 
kl = 1 . k ~  = 1.1) for equation (2.10) at a=O.I ,  .8 = 1, y = I ,  6 = 0 ,  and I = - I .  

Figures 4 and 5 demonstrate the typical profiles of the first corrections to high-order MKdV 
collisions. 

It should be noted that the singular manifold equation (2.12) is of the same type as 
(2.5) for the perturbed KdV (2.1), and a similar auto-Backlund transformation also exists for 
(2.10). Moreover, this permits one to prolong a Miura tmnsformation well known for the 
unperturbed KdV and MKdV [I21 and find its approximate analogue. 

Eliminating S from (2.13) via (1.7), one has 

U E i V  +&i[2(-2@ - 26+y)V3 +4(1oOr -B)VV, + @ + 3 6  - y)V,]/12 

whence it follows that, in turn, V can be expressed approximately in terms of U :  

V Z -iu + &[2i(2B f2S - y)u3 +4(1oOr - B)uu, t i(,9 + 36 - y)u]/lZ. 
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Figure 6. Properties of the perturbed MKdV equation. 

Inserting the latter into (2.7), we anive at the prolongation sought: 

UPKdV = U' - i U x  + &[2((Yf'KdV - 2001 + P - 46 + 2 Y ) U 4  + 2 i ( - h p K d V  + 66 - 3Y)U 'Ux  

f 2(aPKdV - 3 0 ~ ~  + PPKdV + 38 - 36 + Y ) U U x x  f 2(-1& + PPKdV - @)U:  

f i(-aPKdV + loa - PPKdV - @ + 36 - Y ) U . r x x ] / 1 2 .  (2.15) 

As is evident from the foregoing, the mappings (2.Q (2.14) and the prolonged Miura 
transformation (2.15) are of the same nature and associated with the related singular manifold 
equations. For this reason such mappings will be named Miura-type transformations. 

The results obtained for (2.10) are presented schematically in figure 6. 
In the next two examples we will only adduce the net results for the equations under 

consideration. 
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2.3. The perturbed Kaup-Kuperschmidr (KK)  equation 

The perturbed KK equation 

ut + 180u2u, + 75u,uxx + ~OUU,,, +U,,,,, + ~(aru 'u ,  + @ u s  + yuu,u,, 

+ a u Z u x ~ ~  + U ~ ~ X X X X X  + < u ~ u ~ ~ ~ L  + 5ux,uxXx + P U , , , ~ ~ ~ )  = 0 

Proceeding as shown previously, the expressions for U and the singular manifold 

S,, + Sz/4 + E [ ~ ( u  - 24p)SSAL + (U - 30/*)S3 + 72pS,,,, + 6(u - 33p)S;]/72 

(2.16) 

as Well  as the perturbed KdV @.I), is a particular case of the equation proposed in [lo]. 

equation are derived: 

C 

U = - V 2 / 2  - S j 6  + ~ [ 1 2 ( 7 4 3 4 ~  - IS@ + 8y - 339u)(3V4 + 2V2S) 

+6(-9450p + 228- 1Oy +435u)VSX +2(8442/1- 228 + 1Oy -41 lu)SzL 

+ ( 1 9 7 8 2 ~  - 508 + 22y - 909u)S2]/8640 + O(E') 

T 
U=>: ; U'=>: 

S = 25q 

Figure 7. Properties of the perturbed KK equation 
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provided that 

6 = (-24 5 7 0 ~  + 788 - 34y + 13950)/24 

{ = ( - 4 1 5 8 ~  + 148 - 6y + 2550)/12 

S = 5 0 4 / ~  - 28 + y - 2 4 ~  

(Y = 12(840p - 28 + y - 400) 

and the formulae analogous to (2.8). (2.14) are of the form 

(2.17) 

u ' Z ~ u - ~ [ ( 1 1 8 - 5 y  - 118'+5y')~,,+ IZ(2P-y  -28'+y')u2]/360. 

The only integrable case of (216) corresponds to the KK hierarchy at 

(2.18) 

(or, 8, y .  6 ,  U ,  5 ,  f ,  p )  = p(2016,630,2268,504,42,147,252,1) 

Note also that relation (1.9) results in the perturbed Sawada-Kotera equation [ 101 (S = 25q): 

qt + qxxrxx + 25q.rzxq + 254zxqx + 125qxq2 + ~[18~qxxzxxxx + 156qxzxzzq 
2 + 15(5S - 126~)qxzxxqx + 30(5S - 147~)qxxxqu + 75(56 - 126~)qzxxq 

+ 300(5S - 147p)q,,q,q + 150(28 - 63p)q: 

+ 1750(6 - 30p)qxq3]/18 + 0(c2) = 0. 

The results obtained are presented schematically in figure 7. 

2.4. The regularized long-wave equation 

The regularized long-wave equation (RLW) [I61 

U t  + 6uu.r + uixx + E U Z ~  0 (2.19) 

leads to the following results 

U 2 C / 6  - 213s - 2V2 + &[CXI - 2C,V + 2C(S/3 + V')] 
(2.20) 

C 2 A + S - &(2Sxx + A' + 2AS + S2)/2. 

It turns out that the latter is identical to (2.5) with y = -6, 6 = - 1 ,  A ,  = h, Az = -A2/2; 
and this permits one to derive the Miura-type transformation between (2.1) and (2.19): 

URLW 2 U -&[(-U +P + 1 8 ) ~ ~ ~  - 20ru2]/12. 

In addition, the auto-Bacicklund transformation is associated with (2.20) as shown above. 
These results are presented schematically in figure 8. 
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1 I q; t6q: q ' tq; - E  [qlX +1Oq 

Figure S. Propnies of the RLW equation. 

3. Conclusion 

In  the previous sections the combination of the a-PainlevC and singular manifold methods 
has been proposed for perturbed nonlinear PDEs as the generalization of the original WTC 
approach. The technique has been applied to several equations of interest for physical 
models. 

Note that the results may be inapplicable to some special classes of solutions mentioned 
in the introduction. On the other hand, a number of them can be compared with ones 
obtained earlier. For examples, transformation (2.8) for the PKdV agrees with the results 
in [ll]. and the soliton solutions of the perturbed KdV and MKdV equations that can be 
constructed by transformations (2.8) and (2.14) are identical to those from [IO, 17, 181. In 
addition, one notes that all the transformations are easily verified by a direct substitution, 
and the approximate truncated expansions obtained for (2.1), (2.10) and (2.16) are identical 
to the exact ones when these equations belong to the KdV, MKdV or KK hierarchies [12]. 

I would like to point out a problem still to be studied. As noted in proposition 2, 
ui(i > 0) can partially be included into ug. An inverse procedure is also important, because 
S and C may be modified when V is expanded in an asymptotic series. Application of the 
technique previously outlined for (1.7)-(1.8) leads to the following results: 
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s = S‘ - &(W,, + s:w + ZS’w,) + O(&*) 

c = C’ + &(W,C’ + wc; + W < )  + O(2) 
v =  V ’ + & [ w V ~ - w r v ’ + ( w x x + S ’ w ) / 2 ] + O ( & ~ )  

(3 .0  

(S’, C’ and V’ also satisfy (1.7)-(1.8), and w ( x , t )  is an arbitrary function). By this 
means the type of singular manifold equations can be modified and related transformations 
generalized. However, in practice it is not simple to use this fact and select a suitable 
function w ,  because in fact equation (3.1), which is also a Miura-type transformation, is 
also to be found. 
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